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Abstract. D.c. functions are functions that can be expressed as the sum of a concave function
and a convex function (or as the difference of two convex functions). In this paper, we extend the
class of univariate functions that can be represented as d.c. functions. This expanded class is very
broad including a large number of nonlinear and/or ‘nonsmooth’ univariate functions. In addition,
the procedure specifies explicitly the functional and numerical forms of the concave and convex
functions that comprise the d.c. representation of the univariate functions. The procedure is illustrated
using two numerical examples. Extensions of the conversion procedure for discontinuous univariate
functions is also discussed.
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1. Introduction

In this paper, we consider optimization problems of the form

ProblemP : global min{f (x) s.t. x ∈ X} (1)

wherex = (x1, . . . , xn)
T ∈ Rn is an-dimensional decision variable vector,X ⊂

Rn is a compact, convex set,f (x) = ∑n
i=1 fi(xi) is a separable real-valued func-

tion, and each univariate functionfi : Di → R is defined on a closed interval
Di = [ai , bi ] with endpointsai andbi . The difficulty in solving problemP de-
pends, in part, on the form of the functionsfi(xi). We consider four, progressively
harder, cases.

First, if eachfi(xi) is convex forxi ∈ Di, then problemP is a convex min-
imization problem. In this case, a local minimum is also a global minimum and
very efficient methods exist for solving problemP . See, for example [1, 3, 5, 7, 8,
13, 15, 16, 19, 21] for solution methods for convex minimization problems.

Second, if eachfi(xi) is concave forxi ∈ Di, then problemP is a concave
minimization problem and a global minimum will be at an extreme point of the
feasible region of problemP . For concave minimization problems, the global
minimum can be found by methods that involve the relaxation of the objective
functionfi(xi) and the partitioning of the feasible regionX. Optimization methods
for concave minimization problems are described in [2, 10–12, 17, 20].
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Third, if eachfi(xi) can be expressed as?

fi(xi) = pi(xi)+ qi(xi) (2)

where, for eachi, pi : Di → R is a univariateconcavefunction onDi and
qi : Di → R is a univariateconvexfunction onDi, thenfi(xi) is called a ‘d.c.
function onDi ’ and problemP is a d.c. minimization problem. This type of d.c.
minimization problem can be converted to a concave minimization problem by
reexpressing problemP as

global min

{
n∑
i=1

pi(xi)+ z s.t. x ∈ X and
n∑
i=1

qi(xi) 6 z
}

(3)

wherez ∈ R (see, for example, [2]). Recent surveys on the theory and application
of d.c. optimization problems are contained in [11, 12, 22, 23].

Fourth, the hardest case is where eachfi(xi) is an arbitrary function that is, in
general, neither concave nor convex forxi ∈ Di. Examples of this type of problem
include distribution problems involving the joint production and transportation of
goods, economic planning problems involving both decreasing and increasing mar-
ginal costs, and inventory control problems involving congestion effects as well as
economies of scale.

The focus of this paper is on the last, and hardest, case described above. The
paper makes two contributions. First, it enlarges the class of functionsfi(xi) that
can be converted to a d.c. function (see (2)). Second, it provides a straightforward
method of explicitly specifying the functional form of the concave functionpi(xi)

and the convex functionqi(xi) in the d.c. function representation offi(xi). Once
eachpi(xi) andqi(xi) has been specified using the techniques given in this paper,
problemP can be solved via the minimization given in (3) using established tech-
niques for concave minimization problems. Thus, the material given in this paper
can be viewed as a ‘preprocessing’ step in the solution procedure for problemP .

This paper is organized as follows. Section 2 describes the extended class of
functions that can be expressed as d.c. functions. Section 3 presents a procedure
for explicitly specifying the concave and convex functions in the d.c representation
of a function. Section 4 illustrates the procedure using two numerical examples.
Finally, Section 5 summarizes the paper and discusses extensions to the procedure.

2. Extended class of functions

This section extends the class of functions that can be represented as d.c. functions.
In the procedure described in this paper, we consider each functionfi(xi) in prob-
lemP separately, first fori = 1, then fori = 2, and so on up toi = n. Thus, in this
discussion, we assume that we are focusing of the functionfi(xi) for a particular

? Equivalently, a d.c. function can be defined as the difference betwen two convex functions.

411.tex; 15/07/1999; 12:19; p.2



A METHOD FOR CONVERTING A CLASS OF UNIVARIATE FUNCTIONS 57

indexi. Therefore, for convenience, we omit the subscripti in the remainder of this
paper. This means that the definition of a d.c. function given in (2) is expressed as

f (x) = p(x)+ q(x) (4)

wheref : D → R is a univariate function defined on the intervalD = [a , b],
p : D → R is a univariateconcavefunction onD, andq : D → R is a univariate
convexfunction onD.

To highlight the contributions of this paper, we first briefly review some previ-
ous results for d.c. functions. We say that a functionf (x) is of ‘classC2 onD’
if the second derivatives off (x) are continuous for allx ∈ D; and we say that
f (x) is of ‘classP -L onD’ if f (x) is a piecewise-linear continuous function for
all x ∈ D. If f (x) is of classC2 on D or classP -L on D, then there exists a
concave functionp(x) and a convex functionq(x) that satisfies (4) (see [6, 9, 14]).
Although this is a useful result, it does not in and of itself provide a specification
of the functional or numerical form forp(x) andq(x). For instance, consider the
function

f (x) = 2− e−10(x−2)2 − e−0.1(x−5)2 for x ∈ D = [0 ,10] (5)

(see Figure 1). This function is of classC2. But, it is not immediately obvious how
the concave functionp(x) and the convex functionq(x) should be expressed take
in order to satisfy (4).

Another result applies to any continuous function. Iff (x) is a continuous func-
tion onD, then for anyε > 0 there exists a functiong(x) of classC2 onD or class
P -L onD (and therefore a d.c. function onD) such that

|f (x)− g(x)| 6 ε (6)

for all x ∈ D (see, for example, [4], p. 133). Thus, iff (x) is continuous, there
exists a concave functionp(x) and a convex functionq(x) such thatp(x) + q(x)
is arbitrarily close tof (x) for all x ∈ D. For example, the continuous function

f (x) = ∣∣x 3− x∣∣ for x ∈ D = [−2 ,2] (7)

(see Figure 2), which is of neither classC2 nor classP -L, can, in principle,
be approximated sufficiently closely by a high-order polynomialg(x) using the
Weierstrass Approximation Theorem from calculus. However, this approximation
is of limited use since

• it is not an exact representation off (x),
• high-order polynomials are, in general, difficult to evaluate,
• neither the functional nor the numerical forms ofg(x) are given, and
• it is not clear what the form ofp(x) andq(x) should be in order to represent

g(x) as a d.c. function.
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Figure 1. Functionf (x) = 2− e−10(x−2)2 − e−0.1(x−5)2 for D = [0 ,10].
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Figure 2. Functionf (x) =
∣∣∣x 3 − x

∣∣∣ for D = [−2 ,2].

We now present the contribution of this paper by describing a class of continu-
ous functions (which is larger than classC2 and classP -L) for which there is an
exact d.c. representation. To define this class, for any functionf (x), let the first
and second derivatives off (x) be denoted byf ′(x) andf ′′(x), respectively. In
addition, let the ‘left-hand’ (resp., ‘right-hand’) derivative off (x) be denoted by
f ′−(x) (resp.,f ′+(x)).

DEFINITION 1. Let f : D → R be a continuous function defined on a closed
intervalD = [a , b]. Then, the functionf (x) is said to be of ‘class piecewise-C2

onD’ (or ‘classP -C2 onD’, for short) if

• f ′′(x) is continuous for all except a finite number of points in the open
interval(a , b); and
• f ′−(x) andf ′+(x) are finite for all points in the open interval(a , b).

Note that classP -C2 contains the functions of classC2 as well as the functions of
classP -L. However, classP -C2 also contains functions which are neither classC2

nor classP -L. For example, the nonlinear and ‘nonsmooth’ functionf (x) shown
in Figure 2 is in classP -C2.

In the next section, we show that any classP -C2 function can be represented
as a d.c. function. Thus, not only can the ‘smooth’ functions of the type shown
in Figure 1 be represented exactly as a d.c. function, but so can the nonlinear
and ‘nonsmooth’ functions of the type shown in Figure 2. Furthermore, for any
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classP -C2 functionf (x), the form of the concave functionp(x) and the convex
functionq(x) that satisfy (4) can be specified explicitly. Therefore, this method can
be used to produce the functional and numerical forms of the concave and convex
functions used in the d.c. representation of the functions shown in both Figures 1
and 2.

3. Conversion procedure

The purpose of this section is to describe a method for constructing a concave
functionp(x) and a convex functionq(x) that satisfy (4) for any functionf (x) of
classP -C2 defined on a closed intervalD = [a , b]. The conversion procedure –
consisting of four steps – is given below.

The first step of the procedure is to partition the intervalD = [a , b] into a finite
number of contiguous subintervals such thatf (x) alternates between a concave
function and a convex function on adjacent subintervals. For instance, for the func-
tion shown in Figure 2, defined on the intervalD = [−2 ,2], f (x) is convex in the
subinterval[−2 ,−1], concave in the subinterval[−1 ,0], convex in the subinterval
[0 ,0], concave in the subinterval[0 ,1], and so on.

To describe the partitioning procedure formally, letj be an index of the subin-
tervals forj = l, l + 1, . . . , r − 1, r wherel (resp.,r) is the index of the leftmost
(resp., rightmost) subinterval. LetDj = [aj , bj ] denote thej th subinterval where
aj andbj are endpoints of thej th subinterval.? The subintervals are contiguous
and their union spans the original intervalD = [a , b]. Thus, we have

a = al 6 bl = al+1 6 bl+1 · · · ar−1 6 br−1 = ar 6 br = b (8)

The subintervals are defined as follows:

DEFINITION 2. Let f : D → R be a classP -C2 function defined on a closed
intervalD = [a , b] and letDj = [aj , bj ] be the ‘j th subinterval ofD’ for j =
l, l + 1, . . . , r − 1, r whereaj andbj satisfy (8). Then, the subintervalsDj are
chosen such that the number of subintervals (i.e.,r − l + 1) is as small as possible
given that the following two conditions are satisfied:

• If j is odd, then for allx ∈ (aj , bj ), f ′−(x) is nonincreasing,f ′+(x) is
nonincreasing, andf ′−(x) > f ′+(x); and
• If j is even, then for allx ∈ (aj , bj ), f ′−(x) is nondecreasing,f ′+(x) is
nondecreasing, andf ′−(x) 6 f ′+(x).

In other words, ifj is odd thenf (x) is concave onDj ; and if j is even thenf (x)
is convex onDj . By convention, iff (x) is concave on the leftmost subinterval,

? Because we are supressing the subscripti, we denote the interval for theith decision variable
asD (rather thanDi ). Similarly, we denote thej th subinterval for theith decision variable asDj
(rather thanDij ).
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then we setl = 1; whereas, iff (x) is convex on the leftmost subinterval, then we
setl = 2. Note that the definition of the subintervals admits the possibility thataj
may equalbj for some of the subintervals. For instance, for the function shown in
Figure 2, we haveD2 = [−2 ,−1], D3 = [−1 ,0], D4 = [0 ,0], D5 = [0 ,1], and
D6 = [1 ,2]. The subintervalD4 = [0 ,0] is included so thatf (x) is concave on
Dj for j odd and convex onDj for j even.

The method of determining the subintervals for a function is illustrated further
in Appendix A.

The second step of the conversion procedure is to define a coefficient, denoted
1j , measuring the ‘slope’ off (x) at the right endpoint of the subintervalDj .
This information is obtained from the left-hand and right-hand derivatives which,
as assumed for a classP -C2 function, are finite-valued for allx ∈ (aj , bj ). For
j = l, l + 1, . . . , r − 1, the coefficient1j is defined as

1j =
{

min
{
f ′−(bj ) , f ′+(bj )

}
if j odd

max
{
f ′−(bj ) , f ′+(bj )

}
if j even

(9)

The third step of the procedure is to define two affine functionssj : D → R
andtj : D→ R. Forj = l, l + 1, . . . , r − 1, these functions are given by

sj (x) = f (bj )+1j ·(x − bj ) (10)

tj (x) =
j∑
k=l
(−1)j+k ·sk(x) (11)

By definition, we setsj (x) ≡ 0 andtj (x) ≡ 0 if j < l.
The fourth and final step of the conversion procedure is to specify the functions

p : D→ R andq : D→ R. These functions are given by

p(x) =
{
f (x)− tj−1(x) if x ∈ Dj andj odd

tj−1(x) if x ∈ Dj andj even
(12)

q(x) =
{
tj−1(x) if x ∈ Dj andj odd

f (x)− tj−1(x) if x ∈ Dj andj even
(13)

The main results of the conversion procedure given above are summarized in
the following three lemmas.

LEMMA 1. Letf : D→ R be a classP -C2 function defined on a closed interval
D = [a , b] and let the subintervalsDj = [aj , bj ] for j = l, l+1, . . . , r−1, r be
specified according to Definition 2. Then, the number of subintervals (i.e.,r−l+1)
is finite.
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LEMMA 2. Let f : D → R be a classP -C2 function defined on a closed
interval D = [a , b] and letp(x) and q(x) be specified according to(12) and
(13), respectively. Then,p(x) is a concave function for allx ∈ D, andq(x) is a
convex function for allx ∈ D.

LEMMA 3. Let f : D → R be a classP -C2 function defined on a closed
interval D = [a , b] and letp(x) and q(x) be specified according to(12) and
(13), respectively. Then,f (x) = p(x)+ q(x) for all x ∈ D.

The proof of these lemmas is contained in Appendix B. These lemmas state
the desired result of this conversion procedure. Namely, iff (x) is a classP -C2

function, then it can be expressed as the sum of a concave function and a convex
function.

The next section illustrates the mechanics of this conversion procedure.

4. Numerical examples

In this section, the functions shown in Figures 1 and 2 are used to illustrate the
conversion procedure described in Section 3.

4.1. FIRST EXAMPLE

The functionf (x) shown in Figure 1 is given by (5). Since it is a classC2 function,
the first and second derivatives exit. They are given by

f ′(x) = 20(x− 2)e−10(x−2)2 + 0.2(x − 5)e−0.1(x−5)2

f ′′(x) = 20
(
1− 20(x− 2)2

)
e−10(x−2)2

+ 0.2
(
1− 0.2(x − 5)2

)
e−0.1(x−5)2

The endpoints of the subintervalsDj are determined numerically by the endpoints
of the original intervalD = [0 ,10] and by the points wheref ′′(x) switches
between a negative-valued function and a positive-valued function. Moreover, the
slopes1j are taken simply as the value off ′(x) evaluated at the right endpoint
of each subinterval sincef (x) is a classC2 function and thusf ′−(x) = f ′+(x) =
f ′(x). This yields

D1 = [a1 , b1] = [0 ,1.777095] 11 = −2.940585

D2 = [a2 , b2] = [1.777095,2.223145] 12 = 2.455613

D3 = [a3 , b3] = [2.223145,2.980195] 13 = −0.267318

D4 = [a4 , b4] = [2.980195,7.236068] 14 = 0.271249

D5 = [a5 , b5] = [7.236068,10]
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(a) Concave functionp(x) (b) Convex functionq(x)

Figure 3. d.c. representation for first example.

For this example, the functionssj (x) andtj (x) are given by

s0(x) = 0 t0(x) = 0

s1(x) = 6.263345− 2.940585·x t1(x) = 6.263345− 2.940585·x
s2(x) = −4.529474+ 2.455613·x t2(x) = −10.792828+ 5.396197·x
s3(x) = 2.131589− 0.267318·x t3(x) = 12.924417− 5.663516·x
s4(x) = −0.569305+ 0.271249·x t4(x) = −13.493722+ 5.934765·x

Using the functionstj (x) given above and the functionf (x) given in (5), the
concave functionp(x) and the convex functionq(x) are given by

p(x) =



f (x) if x ∈ D1

6.263345− 2.940585·x if x ∈ D2

f (x)+ 10.792828− 5.396197·x if x ∈ D3

12.924417− 5.663516·x if x ∈ D4

f (x)+ 13.493722− 5.934765·x if x ∈ D5

q(x) =



0 if x ∈ D1

f (x)− 6.263345+ 2.940585·x if x ∈ D2

−10.792828+ 5.396197·x if x ∈ D3

f (x)− 12.924417+ 5.663516·x if x ∈ D4

−13.493722+ 5.934765·x if x ∈ D5

These two functions are graphed in Figure 3. Thus, the d.c. representation of the
function shown in Figure 1 consists of the concave and convex functions shown in
Figure 3.
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(a) Concave functionp(x) (b) Convex functionq(x)

Figure 4. d.c. representation for second example.

4.2. SECOND EXAMPLE

For the second example, the functionf (x) shown in Figure 2 is given by (7). For
this function, the endpoints of the subintervalsDj are determined by the endpoints
of the original intervalD = [−2 ,2] and by the points wheref (x) is ‘nonsmooth’.
In addition, the slopes1j are taken as the minimum (resp. maximum) off ′−(x) and
f ′+(x) for j odd (resp. even). In the leftmost subintervalf (x) is convex. Hence,
l = 2. Together, this yields

D2 = [a2 , b2] = [−2 ,−1] 12 = max{−2 ,2} = 2

D3 = [a3 , b3] = [−1 ,0] 13 = min{−1 ,1} = −1

D4 = [a4 , b4] = [0 ,0] 14 = max{−1 ,1} = 1

D5 = [a5 , b5] = [0 ,1] 15 = min{−2 ,2} = −2

D6 = [a6 , b6] = [1 ,2]

For this example, the functionssj (x) andtj (x) are given by

s1(x) = 0 t1(x) = 0

s2(x) = 2+ 2·x t2(x) = 2+ 2·x
s3(x) = 0− 1·x t3(x) = −2− 3·x
s4(x) = 0+ 1·x t4(x) = 2+ 4·x
s5(x) = 2− 2·x t5(x) = 0− 6·x

Using the functionstj (x) given above and the functionf (x) given in (7), the
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concave functionp(x) and the convex functionq(x) are given by

p(x) =



0 if x ∈ D2

f (x)− 2− 2·x if x ∈ D3

−2− 3·x if x ∈ D4

f (x)− 2− 4·x if x ∈ D5

−6·x if x ∈ D6

q(x) =



f (x) if x ∈ D2

2+ 2·x if x ∈ D3

f (x)+ 2+ 3·x if x ∈ D4

2+ 4·x if x ∈ D5

f (x)+ 6·x if x ∈ D6

These two functions are graphed in Figure 4. Thus, the d.c. representation of the
function shown in Figure 2 consists of the concave and convex function shown in
Figure 4.

An overview of the conversion procedure and possible extensions to it are dis-
cussed next.

5. Summary and extensions

This paper has described a method for converting a class of univariate, continuous
functions (referred to as class ‘piecewise-C2’ or ‘P -C2’ functions) into d.c. func-
tions (i.e., functions that can be represented as the sum of a concave function and a
convex function). The class of functions is very broad covering many types of non-
linear, nonconvex, and/or ‘nonsmooth’ functions. The conversion procedure gives
the explicit functional and numerical form of the concave and convex function that
comprise the d.c. function representation of an arbitrary classP -C2 function.

The principal computational burden in the conversion procedure lies in the de-
termination of the subintervals of the domain of the function such that the function
alternates between a concave function and a convex function on adjacent subin-
tervals. Depending on the form of the function, the subintervals can be derived
explicitly or determined numerically (see Appendix A). This conversion procedure
can serve as a ‘preprocessing’ step in an optimization problem whose objective
function separates into univariateP -C2 functions.

The definition of a classP -C2 function f (x) can also be modified slightly to
admit the possibility off (x) being discontinuous at one or both of the endpoints
of the intervalD = [a , b] (see also [14]). For instance, consider the following
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modification of the function given in (5):

f (x) =
{
K if x = 0

2− e−10(x−2)2 − e−0.1(x−5)2 if 0 < x 6 10
(14)

Let f+(a) denote the right-hand limit of the value off (x) asx → a. If K does not
equalf+(a), thenf (x) is discontinuous atx = a and hence does not conform
to the definition of a classP -C2 function. However, the conversion procedure
presented in Section 3 can still be applied to the function in (14) to yield a concave
functionp(x) and a convex functionq(x) such thatf (x) = p(x)+q(x). There are
two cases to consider:K 6 f+(a) andK > f+(a). In the first case,f (x) remains
a concave function on the leftmost subintervalD1 = [0 ,1.777095]. In this case,
there are no changes to the analysis of the example conducted in Section 4.1 except
thatf (x) is defined according to (14) rather than (5).

In the second case, we require the right-hand limitf+(a), and the right-hand
derivativef ′+(a) to be finite-valued (which is satisfied for (14)). We replace the
subintervalD1 = [0 ,1.777095]with two subintervals:D0 = [0 ,0] andD1 =
(0 ,1.777095]. Note that the index of the leftmost interval is nowl = 0 and that
subintervalD1 is no longer closed. The other subintervalsD2 throughD5 remain
the same as those given in Section 4.1. For the affine functionssj (x), we set
sj (x) = 0 for j < l and we set

s0(x) = f+(a)+ f ′+(a)·(x − a) = 1.917915− 0.082085·x
The other affine functionss1(x) through s4(x) are the same as in Section 4.1.
The change in the specification ofs0(x) means that the functionstj (x) must be
recalculated. However, no other changes are required in the conversion procedure.

In short, the conversion procedure described in this paper is applicable to a
broad class of continuous functions as well as to a broad class of fixed-charge
functions.

In closing, it is worthwhile pointing out two limitations to this procedure. First,
the definition of a classP -C2 function requires the left-hand and the right-hand
derivatives (f ′+(x) and f ′+(x)) to be finite. To see the effect of this limitation,
consider the simple continuous function

f (x) = 3
√
x for x ∈ D = [−3 ,3] (15)

Clearly,f (x) is convex on the leftmost subinterval indexed byl = 2 whereD2 =
[−3 ,0] and concave on the rightmost subinterval indexed byr = 3 whereD3 =
[0 ,3] . But atx = 0, we havef ′−(x) = +∞ andf ′+(x) = +∞. This means that
12 = +∞ and the affine function ‘s2(x) = ∞·x’ is not defined. Thus, the cube-
root function given by (15), which is not of classP -C2, cannot be converted into a
d.c. function using the procedures described in this paper.

The other limitation rests on the fact that classP -C2 is defined for univari-
ate functions. This definition can be extended toseparable multivariate functions
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f : Rn→ R (wheref (x) =∑n
i=1 fi(xi) and eachfi(xi) is a classP -C2 function)

or to indefinite quadratic multivariate functions (which can be transformed into
separable functions [18]). However, there does not appear to be a straightforward
way of extending the conversion procedure described in this paper to generalnon-
separablemultivariate functions. Hence, procedures for converting functions into
d.c. functions remain an open and active area of research.
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Appendix A

The method for partitioning the intervalD = [a , b] into subintervals such that
f (x) alternates between a concave function and a convex function on adjacent
subintervals is specific to the functional form off (x).

For the exponential function given in (5), the endpoints of the subintervals can
be found by numerically determining the values ofx such thatf ′′(x), the second
derivative off (x), equals zero andf ′′′(x), the third derivative off (x), is strictly
different from zero. For the ‘nonsmooth’ function given in (7), the endpoints can be
determined by inspection. In this appendix, we illustrate two additional methods.
First, for a fourth-order polynomial, we show how the endpoints can be derived ex-
plicitly. Second, for a piecewise linear function, we present an algorithmic method
for identifying the endpoints.

A.1. FOURTH-ORDER POLYNOMIAL FUNCTION

Let f (x) be given by

f (x) = αx4+ βx3 + γ x2+ δx + ε for x ∈ D = [a , b] (16)

whereα, β, γ , δ, andε are coefficients. The points wheref (x) switches between a
concave function and a convex function depend on the values of these coefficients.
To specify these points, we define three constants – denoted byc, d, ande – as

c = −γ
3β

d =
−β −

√
β2− 8

3αγ

4α
e =
−β +

√
β2 − 8

3αγ

4α
(17)

There are nine mutually exclusive, collective exhaustive possible cases to consider
depending on the values ofα, β, andγ . These nine cases are summarized in Table
1.
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Table 1. Concave and convex subtintervals for fourth-degree polynomial

Case Coefficient Conditions Concave Subinterval Convex Subinterval

1 α = 0 & β = 0 & γ = 0 −∞ 6 x 6 +∞ −∞ 6 x 6 +∞
2 α = 0 & β = 0 & γ < 0 −∞ 6 x 6 +∞ Null set

3 α = 0 & β = 0 & γ > 0 Null set −∞ 6 x 6 +∞
4 α = 0 & β < 0 x > c x 6 c
5 α = 0 & β > 0 x 6 c x > c
6 α < 0 & β2 6 8

3αγ −∞ 6 x 6 +∞ Null set

7 α < 0 & β2 > 8
3αγ x 6 d & x > e d 6 x 6 e

8 α > 0 & β2 6 8
3αγ Null set −∞ 6 x 6 +∞

9 α > 0 & β2 > 8
3αγ d 6 x 6 e x 6 d & x > e

The number of subintervalsDj and determination of the endpoints these subin-
tervals depends upon the location on the real number line of the constantsc, d, and
e with respect toa andb (the endpoints of the intervalD). For instance, in case
number 4 in Table 1, ifc 6 a, thenD is partitioned into a single (sub)interval
D1 = [a1 , b1] = [a , b] in which f (x) is concave; ifc > b, thenD is partitioned
into a single (sub)intervalD2 = [a2 , b2] = [a , b] in which f (x) is convex; and
if a < c < b, thenD is partitioned into a subintervalD1 = [a1 , b1] = [a , c] in
which f (x) is concave and a subintervalD2 = [a2 , b2] = [c , b] in which f (x)
is convex. In a similar manner, the endpoints for each subinterval can be specified
explicitly for all the cases given in Table 1.

A.2. PIECEWISE-LINEAR FUNCTION

Letf (x) be a continuous function composed ofm piecewise-linear segments in the
intervalD = [a , b]. Fork = 1, . . . , ,m letαk be the slope of thek-th segment, and
letβk andβk+1 denote, respectively, the left and right endpoints of thek-th segment.
By construction,β1 = a andβm+1 = b. Note that the number of subintervals will
be less than or equal thanm (the number of piecewise-linear segments). We assume
(without loss of generality) thatf (x) is concave in the leftmost subinterval. Here,
l (the index of the leftmost subinterval) is one; andr (the index of the rightmost
subinterval) is equal to the number of subintervals.

The algorithm coded in Figure 5 can be used to determine the number of subin-
tervals,r, and the endpointsaj andbj in the j th subintervalDj = [aj , bj ] for
j = 1, . . . , r for any piecewise-linear functionf (x).
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begin
a1 := β1

j := 1
α0 := +∞
for k = 1 to m

if (j oddand αk > αk−1) or (j evenand αk < αk−1)
bj := βk
aj+1 := βk
j := j + 1

endif
endfor
bj := βm+1

r := j
end

Figure 5. Pseudo code to determine endpoints for piecewise-linear function.

Appendix B

This appendix contains the proofs of the lemmas given in Section 3.

Proof of Lemma 1. To prove this lemma, we shall assume the contrary and
show a contradiction. That is, we shall assume that there are an infinite number
of subintervals satisfying Definition 2 in the original interval[a , b]. Since the
definition of a classP -C2 function requires that there are only a finite number
of points in whichf ′′(x) is discontinuous, this implies that there is at least one
interval, call it[a , b], contained in[a , b] such thatf ′′(x) is continuous in[a , b]
and there are an infinite number of subintervals in[a , b]. This means thatf ′′(x)
must alternate between being strictly negative (whenj is odd) and strictly positive
(whenj is even) an infinite number of times in the interval[a , b]. Letxj be a point
in thej th subinterval in[a , b] such thatf ′′(xj ) is strictly negative (resp., strictly
positive) whenj is odd (resp., even). LetDj = [xj − δ , xj + δ] whereδ is a
constant. Becausef ′′(x) is continuous in[a , b], there must exist a strictly positive
value ofδ such thatDj is contained in[a , b] andf ′′(x) is strictly different than
zero for allx ∈ Dj . By assumption, there are an infinite number of subintervals
in [a , b]. This implies that for a strictly positive value ofδ, there is an infinite
number of nonoverlapping intervalsDj each of length 2δcontained in the interval
[a , b]. This, in turn, implies that the length of the interval[a , b] must be infinite.
But this is a contradiction since[a , b] is contained in the original interval[a , b]
which is of finite length. This contradiction means that the assumption of an infinite
number of subintervals is incorrect. Therefore, there must be only a finite number
of subintervals. 2
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Proof of Lemma 2. We show thatp(x) given in (12) is a concave function.
An analogous procedure can be used to show thatq(x) given in (13) is convex. To
show thatp(x) is concave, observe thatp(x) can be rewritten as

p(x) =
r∑
j=l
j odd

gj (x)

where

gj (x) =


0 if x < aj
f (x)− sj−1(x) if aj 6 x 6 bj
sj (x)− sj−1(x) if x > bj

We now show that eachgj (x) (for j odd) is a concave function on[a , b]. Note that
for j odd,gj (x) is concave on each of the three regionsx < aj , aj 6 x 6 bj ,
andx > bj . Let the left-hand (resp., right-hand) derivative ofgj (x) be denoted
by g′j−(x) (resp.,g′j+(x)). To show thatgj (x) is concave on[a , b], we need only
verify that if aj > a thengj (x) is continuous ataj andg′j−(aj ) > g′j+(aj ); and if
bj < b thengj (x) is continuous atbj andg′j−(bj ) > g′j+(bj ). To show thatgj (x)
is continuous ataj note that

f (aj )− sj−1(aj ) = f (bj−1)− sj−1(bj−1)

= f (bj−1)−
(
f (bj−1)−1j−1·(bj−1 − bj−1)

) = 0

and to show thatgj (x) is continuous atbj note that

f (bj )− sj−1(bj ) = f (bj )−1j ·(bj − bj )− sj−1(bj ) = sj (bj )− sj−1(bj )

Next, to show that the left-hand derivative is greater than or equal to the right hand
derivative ataj note that

g′j−(aj ) = 0

g′j+(aj ) = f ′+(aj )−1j−1 = f ′+(bj−1)−max{f ′−(bj−1) , f
′
+(bj−1)} 6 0

Hence,g′j−(aj ) > g′j+(aj ). Similarly, to show that the left-hand derivative is
greater than or equal to the right hand derivative atbj note that

g′j−(bj ) = f ′−(bj )−1j−1

g′j+(bj ) = 1j −1j−1

Since1j = min{f ′−(bj ) , f ′+(bj )} 6 f ′−(bj ), this means thatg′j−(bj ) > g′j+(bj ).
Hence,gj (x) (for j odd) is concave on[a , b]. Now, sincep(x) is equal to a
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finite number of functions that are concave on[a , b], this implies thatp(x) is
also concave on[a , b]. Q.E.D.

Proof of Lemma 3. To show thatf (x) = p(x) + q(x) for all x ∈ D, we note
simply that ifx ∈ Dj andj is odd, then

p(x)+ q(x) = (f (x)− tj−1(x)
) + tj−1(x) = f (x)

and that ifx ∈ Dj andj even, then

p(x)+ q(x) = tj−1(x)+
(
f (x)− tj−1(x)

) = f (x)
Since

⋃r
j=l Dj = D, we havef (x) = p(x)+ q(x) for all x ∈ D. 2
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