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Abstract. D.c. functions are functions that can be expressed as the sum of a concave function
and a convex function (or as the difference of two convex functions). In this paper, we extend the
class of univariate functions that can be represented as d.c. functions. This expanded class is very
broad including a large number of nonlinear and/or ‘nonsmooth’ univariate functions. In addition,
the procedure specifies explicitly the functional and numerical forms of the concave and convex
functions that comprise the d.c. representation of the univariate functions. The procedure is illustrated
using two numerical examples. Extensions of the conversion procedure for discontinuous univariate
functions is also discussed.
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1. Introduction
In this paper, we consider optimization problems of the form
Problems: global min{f(x) s.t. x e X} (@h)

wherex = (x1,...,x,)" € R" is an-dimensional decision variable vectof, C
R" is a compact, convex sef(x) = > |_; fi(x;) is a separable real-valued func-
tion, and each univariate functiofy : D; — R is defined on a closed interval
D; = [a; , b;] with endpointsa; andb;. The difficulty in solving problem de-
pends, in part, on the form of the functioiigx;). We consider four, progressively
harder, cases.

First, if eachf;(x;) is convex forx; € D;, then problem# is a convex min-
imization problem. In this case, a local minimum is also a global minimum and
very efficient methods exist for solving problef See, for example [1, 3, 5, 7, 8,
13, 15, 16, 19, 21] for solution methods for convex minimization problems.

Second, if eachy;(x;) is concave forx; € D;, then problem#® is a concave
minimization problem and a global minimum will be at an extreme point of the
feasible region of probleny. For concave minimization problems, the global
minimum can be found by methods that involve the relaxation of the objective
function f; (x;) and the partitioning of the feasible regian Optimization methods
for concave minimization problems are described in [2, 10-12, 17, 20].
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56 B.W. LAMAR

Third, if eachf;(x;) can be expressed’as

Ji(xi) = pi(xi) + qi(x;) 2)

where, for each, p; : D; — R is a univariateconcavefunction on D; and

g; : D; — R is a univariateconvexfunction onD;, then f;(x;) is called a ‘d.c.
function onD;’ and problem# is a d.c. minimization problem. This type of d.c.
minimization problem can be converted to a concave minimization problem by
reexpressing proble® as

globalmin{> " pi(x)+z st xeXand) g(x) <z (3)
i=1 i=1

wherez € R (see, for example, [2]). Recent surveys on the theory and application
of d.c. optimization problems are contained in [11, 12, 22, 23].

Fourth, the hardest case is where eddh;) is an arbitrary function that is, in
general, neither concave nor convex fpre D;. Examples of this type of problem
include distribution problems involving the joint production and transportation of
goods, economic planning problems involving both decreasing and increasing mar-
ginal costs, and inventory control problems involving congestion effects as well as
economies of scale.

The focus of this paper is on the last, and hardest, case described above. The
paper makes two contributions. First, it enlarges the class of funcfigng that
can be converted to a d.c. function (see (2)). Second, it provides a straightforward
method of explicitly specifying the functional form of the concave funciméx;)
and the convex functiog; (x;) in the d.c. function representation ¢f(x;). Once
eachp; (x;) andg; (x;) has been specified using the techniques given in this paper,
problem# can be solved via the minimization given in (3) using established tech-
niques for concave minimization problems. Thus, the material given in this paper
can be viewed as a ‘preprocessing’ step in the solution procedure for prgblem

This paper is organized as follows. Section 2 describes the extended class of
functions that can be expressed as d.c. functions. Section 3 presents a procedure
for explicitly specifying the concave and convex functions in the d.c representation
of a function. Section 4 illustrates the procedure using two numerical examples.
Finally, Section 5 summarizes the paper and discusses extensions to the procedure.

2. Extended class of functions

This section extends the class of functions that can be represented as d.c. functions.
In the procedure described in this paper, we consider each fungtion in prob-
lem » separately, first for = 1, then fori = 2, and so on up tb= n. Thus, in this
discussion, we assume that we are focusing of the fundgfion) for a particular

* Equivalently, a d.c. function can be defined as the difference betwen two convex functions.
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indexi. Therefore, for convenience, we omit the subsariptthe remainder of this
paper. This means that the definition of a d.c. function given in (2) is expressed as

f(x)=px)+qx) (4)

where f : D — R is a univariate function defined on the intenal = [a, b],
p : D — Ris a univariateconcavefunction onD, andg : D — R is a univariate
convexfunction onD.

To highlight the contributions of this paper, we first briefly review some previ-
ous results for d.c. functions. We say that a functjpix) is of ‘classC? on D’
if the second derivatives of (x) are continuous for alk € D; and we say that
f(x)is of ‘classP-L on D' if f(x) is a piecewise-linear continuous function for
all x € D. If f(x) is of classC? on D or classP-L on D, then there exists a
concave functiorp(x) and a convex function(x) that satisfies (4) (see [6, 9, 14]).
Although this is a useful result, it does not in and of itself provide a specification
of the functional or numerical form fop(x) andg(x). For instance, consider the
function

fx) =2 — e 10627 _ ,=010-5% for v ¢ p = [0, 10] (5)

(see Figure 1). This function is of cla€g. But, it is not immediately obvious how
the concave functiop(x) and the convex function(x) should be expressed take
in order to satisfy (4).

Another result applies to any continuous functionf {f) is a continuous func-
tion on D, then for any > 0 there exists a functiog(x) of classC? on D or class
P-L on D (and therefore a d.c. function dm) such that

|f(x) =g <€ (6)

for all x € D (see, for example, [4], p. 133). Thus, ff(x) is continuous, there
exists a concave functiop(x) and a convex functiog (x) such thatp(x) + g(x)
is arbitrarily close tof (x) for all x € D. For example, the continuous function

f)=[x*~x| forxeD=[-2,2] @

(see Figure 2), which is of neither clag® nor classP-L, can, in principle,

be approximated sufficiently closely by a high-order polynomgiél) using the
Weierstrass Approximation Theorem from calculus. However, this approximation
is of limited use since

it is not an exact representation ffx),

high-order polynomials are, in general, difficult to evaluate,

neither the functional nor the numerical formsggk) are given, and

it is not clear what the form gp(x) andg(x) should be in order to represent
g(x) as ad.c. function.
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Figure 1. Function f(x) = 2 — e~106=2?% _ ,.=01=5%tor p — [0, 10,
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Figure 2. Function f (x) = ‘x3 - x’ for D =[-2,2].

We now present the contribution of this paper by describing a class of continu-
ous functions (which is larger than clag$ and classP-L) for which there is an
exact d.c. representation. To define this class, for any fungtion, let the first
and second derivatives ¢f(x) be denoted byf’(x) and f”(x), respectively. In
addition, let the ‘left-hand’ (resp., ‘right-hand’) derivative ¢fx) be denoted by

fL(x) (resp.,fL(x)).

DEFINITION 1. Letf : D — R be a continuous function defined on a closed
interval D = [a, b]. Then, the functionf (x) is said to be of ‘class piecewisg?
on D’ (or ‘class P-C2 on D', for short) if

e f”(x) is continuous for all except a finite number of points in the open
interval (a , b); and
e f/(x) and f (x) are finite for all points in the open intervat , b).

Note that class”-C? contains the functions of clag®’ as well as the functions of
classP-L. However, clas®-C? also contains functions which are neither cl@gs
nor classP-L. For example, the nonlinear and ‘nonsmooth’ functigx) shown
in Figure 2 is in clas-C?.

In the next section, we show that any cla&sC? function can be represented
as a d.c. function. Thus, not only can the ‘smooth’ functions of the type shown
in Figure 1 be represented exactly as a d.c. function, but so can the nonlinear
and ‘nonsmooth’ functions of the type shown in Figure 2. Furthermore, for any
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classP-C? function f(x), the form of the concave functiop(x) and the convex
functiong (x) that satisfy (4) can be specified explicitly. Therefore, this method can
be used to produce the functional and numerical forms of the concave and convex
functions used in the d.c. representation of the functions shown in both Figures 1
and 2.

3. Conversion procedure

The purpose of this section is to describe a method for constructing a concave
function p(x) and a convex functiog(x) that satisfy (4) for any functiorf (x) of
classP-C? defined on a closed interv@) = [a, b]. The conversion procedure —
consisting of four steps — is given below.

The first step of the procedure is to partition the inte®ak [a , b] into a finite
number of contiguous subintervals such tifdt) alternates between a concave
function and a convex function on adjacent subintervals. For instance, for the func-
tion shown in Figure 2, defined on the intendal= [—2, 2], f(x) is convex in the
subinterval—2, —1], concave in the subintervgl-1, 0], convex in the subinterval
[0, O], concave in the subintervid, 1], and so on.

To describe the partitioning procedure formally, jebe an index of the subin-
tervalsforj =1,1+1,...,r — 1, r wherel (resp.,r) is the index of the leftmost
(resp., rightmost) subinterval. Lé&l; = [a; , b;] denote thejth subinterval where
a; andb; are endpoints of thgth subintervat. The subintervals are contiguous
and their union spans the original intenval= [a , b]. Thus, we have

a=aq<b=aqu1<by - aa1<b_1=a <b =b (8)
The subintervals are defined as follows:

DEFINITION 2. Letf : D — R be a classP-C? function defined on a closed
interval D = [a, b] and letD; = [a;, b;] be the ‘jth subinterval ofD’ for j =
I,I+1,...,r —1,r wherea; andb; satisfy (8). Then, the subinterval3; are
chosen such that the number of subintervals (.e-/ + 1) is as small as possible
given that the following two conditions are satisfied:

e If j is odd, then for allx € (a;,b;), f’(x) is nonincreasingf| (x) is
nonincreasing, and’ (x) > f| (x); and

o If j is even, then for alk € (a;,b;), f (x) is nondecreasingf (x) is
nondecreasing, anfl (x) < f(x).

In other words, ifj is odd thenf (x) is concave orD;; and if j is even thenf (x)
is convex onD;. By convention, if f(x) is concave on the leftmost subinterval,

* Because we are supressing the subséripte denote the interval for thih decision variable
as D (rather thanD;). Similarly, we denote thgth subinterval for theth decision variable a® ;
(rather thanD; ;).
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then we set = 1; whereas, iff (x) is convex on the leftmost subinterval, then we
set/ = 2. Note that the definition of the subintervals admits the possibilitydhat
may equab; for some of the subintervals. For instance, for the function shown in
Figure 2, we haved, = [-2, —1], D3 = [—1, 0], D4 = [0, 0], D5 = [0, 1], and
Dg = [1, 2]. The subintervalD, = [0, 0] is included so thaif (x) is concave on
D; for j odd and convex o; for j even.

The method of determining the subintervals for a function is illustrated further
in Appendix A.

The second step of the conversion procedure is to define a coefficient, denoted
Aj, measuring the ‘slope’ of (x) at the right endpoint of the subinterval; .
This information is obtained from the left-hand and right-hand derivatives which,
as assumed for a clagsC? function, are finite-valued for alt € (a; , b;). For
j=10114+1...,r—1,the coefficienth; is defined as

_min{f.®;)), fiby} if jodd

T max{ £ ), £Lb)) i j even ©

The third step of the procedure is to define two affine functions D — R

andt; : D - R.Forj =1[,14+1,...,r — 1, these functions are gi\/en by
sj(x):f(bj)—{—Aj-(x—bj) (10)
j .
) =Y (=1 s (x) (11)

k=l

By definition, we set;(x) = 0 andz;(x) = 0if j <.
The fourth and final step of the conversion procedure is to specify the functions
p: D — Randg : D — R. These functions are given by

p(x) = fx) —tj—1(x) !f x € D; and]. odd 12)
ti—1(x) if x e D; andj even

7(x) = tj-1(x) !f x € D; and]. odd 13)
f(x) —tj_1(x) if x € D; andj even

The main results of the conversion procedure given above are summarized in
the following three lemmas.

LEMMA 1. Letf : D — R be aclassP-C? function defined on a closed interval
D = [a, b] and let the subinterval®; = [a; , b;]for j =1,14+1,... ,r—1,r be
specified according to Definition 2. Then, the number of subintervalsr(i-é 4+ 1)

is finite.
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LEMMA2. Let f : D — R be a classP-C? function defined on a closed
interval D = [a,b] and let p(x) and g(x) be specified according t(l2) and
(13), respectively. Therp(x) is a concave function for alt € D, andg(x) is a
convex function for alk € D.

LEMMA3. Let f : D — R be a classP-C? function defined on a closed
interval D = [a,b] and let p(x) and g(x) be specified according t(12) and
(13), respectively. Thery (x) = p(x) + gq(x) forall x € D.

The proof of these lemmas is contained in Appendix B. These lemmas state
the desired result of this conversion procedure. Namely(if) is a classP-C?
function, then it can be expressed as the sum of a concave function and a convex
function.

The next section illustrates the mechanics of this conversion procedure.

4. Numerical examples

In this section, the functions shown in Figures 1 and 2 are used to illustrate the
conversion procedure described in Section 3.

4.1. FIRST EXAMPLE

The functionf (x) shown in Figure 1 is given by (5). Since it is a clagsfunction,
the first and second derivatives exit. They are given by

f/(x) — ZO(X — 2)8710()672)2 + OZ(X i 5)@701()675)2

() = 20(1 —20(x — 2)2)6710(%2)2
+ 0.2(1 —0.2(x — 5)2)670.l(x75)2

The endpoints of the subintervals; are determined numerically by the endpoints

of the original intervalD = [0, 10] and by the points wherg” (x) switches
between a negative-valued function and a positive-valued function. Moreover, the
slopesA ; are taken simply as the value ¢f(x) evaluated at the right endpoint

of each subinterval sincg(x) is a classC? function and thusf’ (x) = fix) =

f'(x). This yields

Dy =[a1,b1] =10, 1.777095] Ap = —2.940585
D, = [az, by] = [1.777095 2.223145] A, = 2455613
D3 = [as, b3] = [2.223145 2.980195] Az = —0.267318
Dy = [aa, bs] = [2.980195 7.236068] Ay = 0.271249

Ds = [as, bs] = [7.236068 10]
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p(x) acx)
OT ~x 40
5 10
-20 20
-40 0 > X
5 10
(a) Concave functiop(x) (b) Convex functiony (x)

Figure 3. d.c. representation for first example.

For this example, the functions(x) andz;(x) are given by

sox)= O fh(x)= 0

s1(x) = 6.263345— 2.940585x 11(x) = 6.263345— 2.940585x
so(x) = —4.529474+ 2.455613x  fo(x) = —10.792828+ 5.396197 x
s3(x) = 2.131589— 0.267318x 1t3(x) = 12.924417—- 5.663516x
s4(x) = —0.569305+ 0.271249x  14(x) = —13.493722+ 5.934765x

Using the functions;(x) given above and the functiogi(x) given in (5), the
concave functiorp(x) and the convex functiog(x) are given by

£(x) if x € Dy
6.263345— 2.940585x if x € D,
p(x) = { f(x) + 10.792828- 5.396197x if x € D3
12.924417— 5.663516x if x € Dy

f(x) +13.493722- 5.934765x if x € Ds

0 if x € Dy
f(x) —6.263345+ 2.940585x  if x € D,
q(x) = { —10.792828+ 5.396197x if x € D3
f(x) —12.924417+ 5.663516x if x € Dy
—13.493722+ 5.934765x if x € Dg

These two functions are graphed in Figure 3. Thus, the d.c. representation of the
function shown in Figure 1 consists of the concave and convex functions shown in
Figure 3.
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(a) Concave functiop(x) (b) Convex functiony (x)
Figure 4. d.c. representation for second example.

4.2. SECOND EXAMPLE

For the second example, the functigiix) shown in Figure 2 is given by (7). For
this function, the endpoints of the subintervéls are determined by the endpoints
of the original intervalD = [—2, 2] and by the points wherg(x) is ‘nonsmooth’.

In addition, the slopea ; are taken as the minimum (resp. maximum)o6fx) and
fi(x) for j odd (resp. even). In the leftmost subinteryalx) is convex. Hence,
| = 2. Together, this yields

Dy =laz, b2] = [-2, —1] Apy=max-2,2} = 2

D3 =laz,b3] =[-1,0] Az =min{-1,1} = -1
D4 =las,bs] =10, 0] Ag=max-1,1}= 1
Ds = [as, bs] = [0, 1] As =min{—2,2} = -2

De = [as, bs] = [1, 2]

For this example, the functions(x) andz;(x) are given by

s1(x) =0 nx)= 0

so(x) =2+ 2-x hx)= 2+2-x
s3(x) =0—1-x t3(x) = —2—3-x
s4(x) =0+ 1-x th(x)= 2+4-x
ss5(x) =2—2-x ts(x) = 0—6-x

Using the functions;(x) given above and the functiofi(x) given in (7), the
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concave functiorp(x) and the convex function(x) are given by

0 if x € D,
f(x)—2—2.x ifxe D3
p(x) =1-2—3x if x € Dy
fx)—2—4.x ifxe Ds
—6-x if x € Dg
Sf(x) if x € Dy
2+2-x if x € D3
gx)=3f(x)+2+3x ifxeDy
2+4.x if x € Dsg
fx)+6-x if x € Dg

These two functions are graphed in Figure 4. Thus, the d.c. representation of the
function shown in Figure 2 consists of the concave and convex function shown in
Figure 4.

An overview of the conversion procedure and possible extensions to it are dis-
cussed next.

5. Summary and extensions

This paper has described a method for converting a class of univariate, continuous
functions (referred to as class ‘piecewi§é-or ‘* P-C?’ functions) into d.c. func-

tions (i.e., functions that can be represented as the sum of a concave function and a
convex function). The class of functions is very broad covering many types of non-
linear, nonconvex, and/or ‘nonsmooth’ functions. The conversion procedure gives
the explicit functional and numerical form of the concave and convex function that
comprise the d.c. function representation of an arbitrary dPag¥ function.

The principal computational burden in the conversion procedure lies in the de-
termination of the subintervals of the domain of the function such that the function
alternates between a concave function and a convex function on adjacent subin-
tervals. Depending on the form of the function, the subintervals can be derived
explicitly or determined numerically (see Appendix A). This conversion procedure
can serve as a ‘preprocessing’ step in an optimization problem whose objective
function separates into univariaie C? functions.

The definition of a clas®-C? function f(x) can also be modified slightly to
admit the possibility off (x) being discontinuous at one or both of the endpoints
of the intervalD = [a, b] (see also [14]). For instance, consider the following
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modification of the function given in (5):

ifx=0
Jx) = 2 o~106-22 _ ,—01:-5° if0 < x < 10 (14)
Let £, (a) denote the right-hand limit of the value ¢{x) asx — a. If K does not
equal f, (a), then f(x) is discontinuous at = « and hence does not conform
to the definition of a clas®-C? function. However, the conversion procedure
presented in Section 3 can still be applied to the function in (14) to yield a concave
function p(x) and a convex function(x) such thatf (x) = p(x) +¢(x). There are
two cases to consideK < f,(a) andK > f,(a). In the first casef (x) remains
a concave function on the leftmost subinteral = [0, 1.777095]. In this case,
there are no changes to the analysis of the example conducted in Section 4.1 except
that f (x) is defined according to (14) rather than (5).

In the second case, we require the right-hand lifaitz), and the right-hand
derivative f (a) to be finite-valued (which is satisfied for (14)). We replace the
subintervalD; = [0, 1.777095]with two subintervals:Dy = [0,0] and D; =
(0, 1.777095] Note that the index of the leftmost interval is néw= 0 and that
subintervalD; is no longer closed. The other subintervals through Ds remain
the same as those given in Section 4.1. For the affine functighg, we set
sj(x) = 0for j </ and we set

so(x) = fi(a) + fjr(a)-(x —a) =1.917915—- 0.082085x

The other affine functions;(x) throughs,(x) are the same as in Section 4.1.
The change in the specification @f(x) means that the functions(x) must be
recalculated. However, no other changes are required in the conversion procedure.

In short, the conversion procedure described in this paper is applicable to a
broad class of continuous functions as well as to a broad class of fixed-charge
functions.

In closing, it is worthwhile pointing out two limitations to this procedure. First,
the definition of a clas®-C? function requires the left-hand and the right-hand
derivatives (| (x) and f(x)) to be finite. To see the effect of this limitation,
consider the simple continuous function

f(x)=<Jx forxeD=[-3,3] (15)

Clearly, f(x) is convex on the leftmost subinterval indexediby 2 whereD, =
[—3, 0] and concave on the rightmost subinterval indexed by 3 whereD3; =
[0, 3] . Butatx = 0, we havef’ (x) = 400 and f} (x) = +oc. This means that
As = +oo and the affine functionss(x) = oo-x’ is not defined. Thus, the cube-
root function given by (15), which is not of clagsC?, cannot be converted into a
d.c. function using the procedures described in this paper.
The other limitation rests on the fact that claBsC? is defined for univari-

ate functions. This definition can be extendedsparable multivariate functions
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f:R" — R (wheref(x) =Y.', f:(x;) and eachy; (x;) is a classP-C? function)

or to indefinite quadratic multivariate functions (which can be transformed into
separable functions [18]). However, there does not appear to be a straightforward
way of extending the conversion procedure described in this paper to ganearal
separablemultivariate functions. Hence, procedures for converting functions into
d.c. functions remain an open and active area of research.
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Appendix A

The method for partitioning the intervdd = [a, b] into subintervals such that
f(x) alternates between a concave function and a convex function on adjacent
subintervals is specific to the functional form pfx).

For the exponential function given in (5), the endpoints of the subintervals can
be found by numerically determining the valuesxa$uch thatf” (x), the second
derivative of f (x), equals zero ang”(x), the third derivative off (x), is strictly
different from zero. For the ‘nonsmooth’ function given in (7), the endpoints can be
determined by inspection. In this appendix, we illustrate two additional methods.
First, for a fourth-order polynomial, we show how the endpoints can be derived ex-
plicitly. Second, for a piecewise linear function, we present an algorithmic method
for identifying the endpoints.

A.l. FOURTH-ORDER POLYNOMIAL FUNCTION

Let f(x) be given by
f)=ax*+px*+yx?+8x+e forxeD=la,b] (16)

wherea, 8, v, 8, ande are coefficients. The points whefé&x) switches between a
concave function and a convex function depend on the values of these coefficients.
To specify these points, we define three constants — denoted/bynde — as

—y BB ey =B+ B Jay a7

e =

c= d =
36 4o 4o

There are nine mutually exclusive, collective exhaustive possible cases to consider
depending on the values ef 8, andy . These nine cases are summarized in Table
1.
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Table 1. Concave and convex subtintervals for fourth-degree polynomial

Case Coefficient Conditions Concave Subinterval Convex Subinterval

1 a=0&8=0&y =0 —-oo<x<+0 —00 < x < +0
2 a=0&8=0&Yy <0 —-o0<x<+© Null set

3 a=0&B=0&y >0 Nullset —00 < x < 400
4 a=0&8<0 x>=c x<c

5 a=0&8>0 x<c x>=c

6 a<0&,82<:—§ay —00 < x < 400 Null set

7 oe<0&/32>%oey x<d&x>e d<x<e

8 a>0&ﬁ2<%o¢y Null set —00 < x < 400
9 a>0&,32>%ay d<x<e x<d&x>e

The number of subintervald; and determination of the endpoints these subin-
tervals depends upon the location on the real number line of the constantnd
e with respect taz andb (the endpoints of the intervdD). For instance, in case
number 4 in Table 1, it < a, then D is partitioned into a single (sub)interval
Dy = [a1, b1] = [a, b] in which f(x) is concave; ifc > b, thenD is partitioned
into a single (sub)intervab, = [a,, b,] = [a, b] in which f(x) is convex; and
if a < ¢ < b, thenD is partitioned into a subintervdd,; = [a1, b1] = [a,c] in
which f(x) is concave and a subintervBl, = [a,, by] = [c, b] in which f(x)
is convex. In a similar manner, the endpoints for each subinterval can be specified
explicitly for all the cases given in Table 1.

A.2. PIECEWISELINEAR FUNCTION

Let f(x) be a continuous function composediopiecewise-linear segments in the
interval D = [a, b]. Fork = 1, ... ,, m leta, be the slope of the-th segment, and
let B, andpB,.1 denote, respectively, the left and right endpoints ofthle segment.
By construction,8; = a andB,, .1 = b. Note that the number of subintervals will
be less than or equal than(the number of piecewise-linear segments). We assume
(without loss of generality) thaf (x) is concave in the leftmost subinterval. Here,
[ (the index of the leftmost subinterval) is one; an@the index of the rightmost
subinterval) is equal to the number of subintervals.

The algorithm coded in Figure 5 can be used to determine the number of subin-
tervals,r, and the endpoints; andb; in the jth subintervalD; = [a;, b;] for
j=1,...,r for any piecewise-linear functiofi(x).
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begin
a; = p1
ji=1
ap = +00
fork =1tom
if (j oddand o > ay_1) or (j evenand a;, < a;_1)
bj = i
ajy1:= P
j=j+1
endif
endfor
bj = ﬂm-‘rl
ri=7j
end

Figure 5. Pseudo code to determine endpoints for piecewise-linear function.

Appendix B

This appendix contains the proofs of the lemmas given in Section 3.

Proof of Lemma 1. To prove this lemma, we shall assume the contrary and
show a contradiction. That is, we shall assume that there are an infinite number
of subintervals satisfying Definition 2 in the original intenfal, »]. Since the
definition of a classP-C? function requires that there are only a finite number
of points in which f”(x) is discontinuous, this implies that there is at least one
interval, call it[a, b], contained ina , b] such thatf”(x) is continuous ina , b]
and there are an infinite number of subinterval§ana]. This means thaf” (x)
must alternate between being strictly negative (whénodd) and strictly positive
(whenj is even) an infinite number of times in the interi@l 5]. Letx; be a point
in the jth subinterval in@, 5] such thatf” (x;) is strictly negative (resp., strictly
positive) whenj is odd (resp., even). LeéD; = [x; — §,%, + 8] wheres is a
constant. Becausg”(x) is continuous iria , b], there must exist a strictly positive
value of$ such thatD; is contained in@, b] and f”(x) is strictly different than
zero for allx € D;. By assumption, there are an infinite number of subintervals
in [a, b). This implies that for a strictly positive value éf there is an infinite
number of nonoverlapping interval3; each of length 2&ontained in the interval
[@, b). This, in turn, implies that the length of the interyal, b] must be infinite.

But this is a contradiction sincg , b] is contained in the original intervéd: , b]
which is of finite length. This contradiction means that the assumption of an infinite
number of subintervals is incorrect. Therefore, there must be only a finite number
of subintervals. O
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Proof of Lemma 2. We show thatp(x) given in (12) is a concave function.
An analogous procedure can be used to showghat given in (13) is convex. To
show thatp(x) is concave, observe thalx) can be rewritten as

p) = gj(x)
odd
where

0 if x <aj
gi(x) =1 f(x) —sj_1(x) ifa; <x<b;
si(x) —sj_1(x) if x > b;

We now show that eacd; (x) (for j odd) is a concave function da , »]. Note that
for j odd, g;(x) is concave on each of the three regions a;, a; < x < bj,
andx > b;. Let the left-hand (resp., right-hand) derivative gfx) be denoted
by g’_(x) (resp.,g’, (x)). To show thafg;(x) is concave ona , b], we need only
verify that ifa; > a theng;(x) is continuous at; andg’;_(a;) > g, (a;); and if
bj < btheng;(x) is continuous ab; andg’_(b;) > g;, (b;). To show that; (x)
Is continuous a&; note that

flaj) —sj-1(a;) = f(bj-1) —sj-1(bj-1)
= f(bj—1) — (f(bj—1) — Aj_1-(bj—1 —bj_1)) =0

and to show thag; (x) is continuous ab; note that
f(bj) - ijl(bj) = f(bj) - Aj'(bj - bj) - ijl(bj) = Sj(bj) - ijl(bj)

Next, to show that the left-hand derivative is greater than or equal to the right hand
derivative atz; note that

g (aj)=0

gi(ay) = fia) —Aja= fi(bj-1) —maxf (bj-1), fi(bj-1)} <0

Hence,g}f(aj) > g;+(aj). Similarly, to show that the left-hand derivative is
greater than or equal to the right hand derivative atote that

g (b)) = fLb))—Aja
girb)) =A; —Aj

SinceA; = min{f’ (b)), f1(bj)} < fL(b;), this means thag/,._(bj) > g}+(bj).
Hence,g;(x) (for j odd) is concave otia, b]. Now, sincep(x) is equal to a
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finite number of functions that are concave fon b], this implies thatp(x) is
also concave ofu, b]. Q.E.D.

Proof of Lemma 3. To show thatf (x) = p(x) + ¢g(x) for all x € D, we note
simply thatifx € D; and; is odd, then

p(xX) +q(x) = (f(x) — tj_1(x)) + tj_1(x) = f(x)

and that ifx € D; andj even, then

() +q(x) =1, 1(x) + (f(x) —1j-1(x)) = f(x)

SinceUSzl D; = D, we havef(x) = p(x) + ¢q(x) forall x € D. O
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